Show-stopper values

Let us find show-stopper values for $R_a$, $S_v$, and $S_i$ for the case in which the noise factor $NF$ equals 2 (3dB).

Noise factor NF

The noise factor NF [-] is obtained as:

$$ \mathrm{NF}=0.001583\,R_{a}+1.006\cdot 10^{+17}\,S_{v}+1.006\cdot 10^{+17}\,S_{i}\,\left(0.9025\,{R_{a}}^2+1140.0\,R_{a}+3.6\cdot 10^{+5}\right)+1.0 $$

Show-stopper value $R_a$

The show stopper value $R_{amax}$ for $R_a$ with $NF=2$, $S_v=0$ and $S_i=0$ is obained as:

$$ R_{\mathrm{a{max}}}=631.6 $$

Show-stopper value $S_v$

The show stopper value for $S_v$ with $NF=2$ and $S_i=0$ can be obained a function of $R_a$ (setting $R_a$ to zero would be meaningless):

$$ S_{\mathrm{v{max}}}=9.941\cdot 10^{-18}-1.574\cdot 10^{-20}\,R_{a} $$

Show-stopper value $S_i$

The show stopper value for $S_i$ with $NF=2$ and $S_v=0$ can be obained a function of $R_a$: (setting $R_a$ to zero would be meaningless):

$$ S_{\mathrm{i{max}}}=-\frac{1.0\,\left(3.167\cdot 10^{+19}\,R_{a}-2.0\cdot 10^{+22}\right)}{1.816\cdot 10^{+39}\,{R_{a}}^2+2.294\cdot 10^{+42}\,R_{a}+7.243\cdot 10^{+44}} $$

Go to main index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 0.6 © 2009-2020 Anton Montagne

For documentation, examples, support, updates and courses please visit: analog-electronics.eu