Let us find show-stopper values for $R_a$, $S_v$, and $S_i$ for the case in which the noise factor $NF$ equals 2 (3dB).
The noise factor NF [-] is obtained as:
$$ \mathrm{NF}=0.001583\,R_{a}+1.006\cdot 10^{+17}\,S_{v}+1.006\cdot 10^{+17}\,S_{i}\,\left(0.9025\,{R_{a}}^2+1140.0\,R_{a}+3.6\cdot 10^{+5}\right)+1.0 $$
The show stopper value $R_{amax}$ for $R_a$ with $NF=2$, $S_v=0$ and $S_i=0$ is obained as:
$$ R_{\mathrm{a{max}}}=631.6 $$
The show stopper value for $S_v$ with $NF=2$ and $S_i=0$ can be obained a function of $R_a$ (setting $R_a$ to zero would be meaningless):
$$ S_{\mathrm{v{max}}}=9.941\cdot 10^{-18}-1.574\cdot 10^{-20}\,R_{a} $$
The show stopper value for $S_i$ with $NF=2$ and $S_v=0$ can be obained a function of $R_a$: (setting $R_a$ to zero would be meaningless):
$$ S_{\mathrm{i{max}}}=-\frac{1.0\,\left(3.167\cdot 10^{+19}\,R_{a}-2.0\cdot 10^{+22}\right)}{1.816\cdot 10^{+39}\,{R_{a}}^2+2.294\cdot 10^{+42}\,R_{a}+7.243\cdot 10^{+44}} $$
Go to main index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 0.6 © 2009-2020 Anton Montagne
For documentation, examples, support, updates and courses please visit: analog-electronics.eu