VampNoise.m

fileName = 'VampNoise';

checkCircuit(fileName);

htmlPage('Circuit data');

head2html(['Circuit diagram: ', fileName]);

img2html([fileName, '.svg'], 800);

netlist2html(fileName);

%%

gainType('vi');

dataType('noise');

%

% Define souce, detector, source resistance and voltage gain factor

source('V1');

detector('V_out');

%

htmlPage('Symbolic noise analysis');

simType('symbolic');

noiseResultSym = execute();

noise2html(noiseResultSym);

%

htmlPage('Numeric noise analysis');

simType('numeric');

noiseResultNum = execute();

noise2html(noiseResultNum);

%

%%

% Let us find show-stopper values for R_a, S_v, and S_i for the case in

% which the noise factor NF=2 (3dB).

%

% Determine the noise factor NF: (this procedure works with

% frequency-independent noise spectra only)

%

syms('R_a', 'S_v', 'S_i', 'NF', 'R_a_max', 'S_i_max', 'S_v_max');

htmlPage('Show-stopper values');

%

text2html(['Let us find show-stopper values for $R_a$, $S_v$, and ' ...

'$S_i$ for the case in which the noise factor $NF$ equals 2 (3dB).']);

head2html('Noise factor NF');

text2html('The noise factor NF [-] is obtained as:');

NFact = simplify(getInoise(noiseResultNum)/getInoise(noiseResultNum, 'V1'));

eqn2html(NF, NFact);

%

% Show stopper (= maximum) value $R_{amax}$ for R_a with S_i=0 and S_v=0

Ra_max = vpa(solve(subs(NFact-2, [S_v, S_i], [0, 0]), R_a), 3);

head2html('Show-stopper value $R_a$');

text2html(['The show stopper value $R_{amax}$ for $R_a$ with $NF=2$, ',...

'$S_v=0$ and $S_i=0$ is obained as:']);

eqn2html(R_a_max, Ra_max);

%

% Show stopper (= maximum) $S_{v,max}$ for S_v as a function of R_a and S_i=0

Sv_max = vpa(solve(subs(NFact-2, S_i, 0), S_v), 3);

head2html('Show-stopper value $S_v$');

text2html(['The show stopper value for $S_v$ with $NF=2$ and $S_i=0$ ',...

'can be obained a function of $R_a$ (setting $R_a$ to zero would ' ...

'be meaningless):']);

eqn2html(S_v_max, Sv_max);

%

% Show stopper (= maximum) $S_{i,max}$ for S_i as a function of R_a and S_i=0

Si_max = vpa(solve(subs(NFact-2, S_v, 0), S_i), 3);

head2html('Show-stopper value $S_i$');

text2html(['The show stopper value for $S_i$ with $NF=2$ and $S_v=0$ ',...

'can be obained a function of $R_a$: (setting $R_a$ to zero would ' ...

'be meaningless):']);

eqn2html(S_i_max, Si_max);

%

script2html('VampNoise');

stophtml();

Go to main index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 0.6 © 2009-2020 Anton Montagne

For documentation, examples, support, updates and courses please visit: analog-electronics.eu