Why do we need a feedback model if we can analyse our circuits using MNA and SPICE?

We need it for designing feedback circuits!

How does that work?

Two-step design approach for negative feedback amplifiers

1. Determine the requirements for the amplifier's transmission matrix A, B, C, and D, and design the amplifier type and its ideal value of the port impedance:
 - load voltage (output parallel) defining to fix A and/or C
 - load current (output series) defining to fix B and/or D
 - a feedback network to generate a copy of the source signal from the load signal
 - source voltage (input series) comparing to fix A and/or B
 - source current (input parallel) comparing on to fix C and/or D
 - a nullor as ideal controller (error amplifier)

2. Designing an error amplifier (such that the difference between the gain and the ideal gain is small enough).

Still don't get it: just increase the gain of the controller until the error is small enough!

Good luck with this trial-and-horror method!

Multiple cascaded amplifier stages may give a lot of gain AND a lot of phase shift, which may turn the negative (corrective) feedback into positive (regenerative) feedback!

With the aid of a feedback model we can investigate in which way to which extend the performance aspects of the amplifier depend on those of the controller. By knowing this, we can derive performance specifications for the controller from those of the amplifier.

Wow, that sounds like a great idea; must have been a smart person who discovered this!

Black presented a basic feedback model:

\[E_s / \text{Input quantity} \quad E_o / \text{Output quantity} \quad K / \text{Controller gain} \quad E_r = \text{Feedback gain} = \text{reciprocal value of ideal gain} \quad H_k / \text{Loop gain} = \text{measure for correspondence between the ideal gain and the gain} \]

Okay, looks great! Let's use it!

All models are wrong, but some are useful!

[Go to Box] Models should be as simple as possible, but not simpler! [A. Einstein]

The idea is great: if the loop gain approaches infinity, the gain approaches the gain.

However, in many cases this model is far too simple.

1. The loop gain is not the only contributer to the mismatch between the ideal gain and the actual gain:
 - Direct transfer through the feedback network and/or controller
 - Parasitic impedances in series or in parallel with elements of the feedback network
 - Parasitic impedances in series or in parallel with the signal source and/or the load
 - Finite common-mode impedance of a floating controller port
 - Finite common-mode impedance of the case of a floating controller port
 - As a result of interactions between the controller, the source, and the feedback network, the loop gain cannot easily be written as the product of the controller gain H and the feedback gain k.

Hm, and now?

Use a better model!

Asymptotic gain feedback model

Please explain!

Superposition model

1. In a network comprising feedback, the gain of an arbitrarily selected controlled source is taken as loop gain reference.

2. This controlled source is replaced with an independent source (this breaks the loop).

3. We now have a network with two independent sources and two responses and write:

\[A_j = \frac{E_j}{E_j} = \frac{1}{\mathbf{K} + \mathbf{H}_k} \]

4. Calculate the source-to-load transfer (gain) using:

\[E_s = A_r E_r \]

5. Calculate the asymptotic gain:

\[Asym = \lim_{K \rightarrow \infty} A_j \]

6. Rewrite the expression for the gain:

\[A_j = \frac{E_j}{E_j} = \frac{1}{\mathbf{K} + \mathbf{H}_k} \]

The asymptotic gain model

Looks like Black's model again!

Only identical if: \(\varphi = 0 \) and if: \(\beta = \frac{1}{\lambda} \)

The latter one requires proper selection of the loop gain reference!

Quite confusing; what's the fun?

Asym as obtained from MNA!

It becomes very useful if the asymptotic gain equals the ideal gain! The latter one has been designed in the first design step: the design of the feedback network.

This is the case if the direct transfer equals zero and if the loop reference is selected such that it is replaced with a nullor the controller becomes a nullor.

We then have our two-step design:

1. Design of the ideal gain = design feedback network

2. Design of the controller such that its contribution to the loop gain is large enough (the servo function approaches unity).

What about the other terms? \(\kappa, \lambda \)

They can provide information about the influence of the source and the load impedance on the loop gain:

- If \(E_s \) is taken at the input of the controller (at the nullator) \(\varphi = 0 \) and \(\beta = \frac{1}{\lambda} \) then the asymptotic gain corresponds with the asymptotic gain with the asymptotic gain.

- The load impedance plays no role in the loop gain if: \(\lambda = 0 \) and dimensionless

Does the ideal gain always equal the asymptotic gain?

No! (All models are wrong but ...)

The asymptotic gain equals the ideal gain if the controller obtains nuller properties when the selected controlled source is replaced with a nullor.

And what if this is not the case?

Then, the loop gain is NOT the unique measure for the correspondence between the gain and the ideal gain.

So its all about the two-step design?

Seem's you've got the message!

So what's the problem?

1. The controller does seldom behave as a natural two-port

2. There often exist local feedback loops in the controller

3. The loop gain reference should not be selected inside such a local loop

The ideal gain is obtained with a natural two-port (nuller) approach.

According to network theory, a network can always be modeled as a two-port if:

1. It has two ports

2. The ports are terminated with one-ports

3. The network is a natural two-port

So this model turns out to be useless anyway?

No, its very useful!

1. The source-to-load transfer calculated from the asymptotic gain model equals the one calculated from modified nodal analysis

2. Correspondence between the asymptotic gain and the ideal gain tells us about the meaning of the loop gain; no other model provides such a check!

3. At an early stage of the design this correspondence can be made very good by using relative simple device models that provide sufficient design information.

Sounds nice but ...

Examples will help you

PREF, finally!

Example 10.1: Model of Black

Controller type matches amplifier type: HK can easily be identified in the loop gain expression.

Example 10.2: Model of Black

Controller type opposite to amplifier type: HK cannot easily be identified in the loop gain expression.

Example 10.3: Asymptotic-gain model

Selection of loop gain reference such that the ideal-gain corresponds with the asymptotic gain.

Example 10.4: Asymptotic-gain model

Influence of parasitic impedance on the asymptotic gain (two-port conditions).

Section 10.3.4: Hand calculation of the loop gain of a passive feedback voltage amplifier.

But there is more

We have seen that:

1. Parallel feedback at an amplifier port reduces the port impedance

 - In single-loop feedback amplifiers the ideal value of the port impedance will become zero

2. Series feedback at an amplifier port increases the port impedance

 - In single-loop feedback amplifiers the ideal value of the port impedance will become infinite

The superposition model and the asymptotic gain model can be used to study the effect of feedback on the port impedance

So what's use of that?

1. In multiple-loop negative feedback amplifiers it will help us to find requirements for the loop gain under two conditions: The port is left open; parallel feedback is effective but series feedback is not. The port is shorted: series feedback is effective but parallel feedback is not. Both loop gains are a measure for the mismatch between the port impedance and its ideal value which is determined by the feedback network.

2. Manufacturers of operational amplifiers often specify the "loop" or "output" impedance of an OpAmp, rather than its output impedance.

With the aid of the superposition model we are able to relate one to the other.

See section 10.3.6, example 10.8

SLICAP can be used for the analysis and design of negative feedback amplifiers

Use GainType() to define the type of transfer you want to evaluate:

- gain: source-to-load transfer

 requires definition of:

 * signal source

 * detector

 * asymptotic: source-to-load transfer (loop gain reference replaced with a nullor)

 requires definition of:

 * signal source

 * detector

 * loop gain reference

 * loop gain reference +’lopopn’: loop gain as defined in the asymptotic gain model

 requires definition of:

 * loop gain reference

 * loop gain reference

 * source function as defined in the asymptotic gain model

 requires definition of:

 * loop gain reference

 * source function

Associated functions:

source Define the signal source

detector Define the signal detector

IgGf Define the loop gain reference

gainType Define the amplifier Type

controlled Returns a list of controlled sources that can be used as loop gain reference

depVars Returns a list of nodal voltages and branch currents that can be used as signal source

SLICAP help:

For opening the SLICAP documentation, type ‘Help’ in the MATLAB Command Window

For displaying help for a specific function, type ‘help <functionName>’ in the MATLAB Command Window

(c) 2019, A. J.M. Montagne