The relative settling error versus time can be founs as:
$$ \mathrm{\epsilon}_{s}=1.0\,{\mathrm{e}}^{-\frac{1.0\,t}{C\,R}} $$
The settling time to $n$ bit can be found as the solution of:
$$ \mathrm{\epsilon}_{s}=\frac{1}{{2.0}^{1.0\,n}} $$
This yields:
$$ \mathrm{\tau}_{s}=-1.0\,C\,R\,\ln\left(\frac{1}{{2.0}^{1.0\,n}}\right) $$
The resistance $R$ can be written as a function of the capacitance $C$ and the settling time $\tau_s$ to $n$ bit:
$$ R=-\frac{1.0\,\mathrm{\tau}_{s}}{C\,\ln\left(\frac{1}{{2.0}^{1.0\,n}}\right)} $$
The capacitance $C$ can be written as a function of the resistance $R$ and the settling time $\tau_s$ to $n$ bit:
$$ C=-\frac{1.0\,\mathrm{\tau}_{s}}{R\,\ln\left(\frac{1}{{2.0}^{1.0\,n}}\right)} $$
For a settling time of 100ns to 10bit, with a capacitance of 10pF, we need a resistance of: 1442.695$\Omega$
Go to main index, Forum
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 0.5 © 2009-2018 Anton Montagne
For documentation, examples, support, updates and courses please visit: analog-electronics.eu