Lecture 5

color coded resistors

Overview of the program

  1. Demonstration: capacitively loaded CC stage.

  2. Presentation

    Note: scrolling through presentations

    Always open presentations in a new tab: CRTL + click

    Capacitively loaded Common Collector Stage

    The common collector stage (CC stage) is a nonenergic unity-gain negative feedback voltage amplifier that has a CE (common-emitter) stage as controller. Under ideal drive and load conditions, the loopgain in a CC stage is usually larger than the loop gain of its MOS equivalent: the CD stage. As a result, a capacitively loaded CC stage easily becomes instable.

    A demonstration of the step response a capacitively loaded CC stage with a 2N3904 BJT shows this effect.

    Presentation

    The presentation “Capacitively loaded CC stage” discusses the analysis of the frequency response of the demonstrated stage with the aid of the asymptotic gain feedback model and elucidates frequency compensation with the aid of a phantom zero at the input and at the output of the stage.

  3. Guidance with homework

color coded resistors

Study

Chapter 13

Relevant lectures from EE3C11

Posters

  1. Modeling of Negative Feedback Circuits
  2. Derive controller requirements from amplifier requirements
  3. Poles and zeros
  4. Frequency compensation

Note: scrolling through presentations

Always open presentations in a new tab: CRTL + click

Modeling of negative feedback circuits

Two-step design of negative-feedback amplifiers

The design of negative-feedback amplifiers can be performed in two steps:

  1. The design of the ideal gain of the amplifier. This comprises the design of the structure of the amplifier with feedback networks and nullors as ideal controllers.
  2. The design of the controller(s) (also error amplifiers)

This two-step design method requires that butgets for performance limitations of the amplifier are split into error budgets for the feedback networks and error budgets for the controller.

Presentation

The presentation “Two-step design of negative feedback amplifiers shows that a feedback model that supports the two-step design of negative feedback amplifiers will tell us in which way and to what extent performance limitations of the amplifier are affected by performance limitations of the controller(s).

Video

Two-step design of negative feedback amplifiers

Study

Chapter 10.1

Feedback model of Black

In 1927, Black built the first negative feedback amplifier. The feedback model of Black is commonly used to evaluate the dynamic performance of negative feedback systems. However, Black’s feedback model is not optimally suited for the analysis of dynamic behavior of electronic feedback amplifiers and providing meaningful design information from such analysis.

Presentation

The presentation “Feedback model of Black introduces the feedback model of Black and shows its limitations for the analysis of electronic feedback circuits.

Video

Feedback model of Black

Study

Chapter 10.2

Asymptotic-gain feedback model

The asymptotic-gain feedback model provides a solid base for relating controller imperfections such as:

  1. Static (DC) gain limitation
  2. Bandwidth limitation
  3. Weak nonlinearity (differential gain)

to important performance limitations of the amplifier:

  1. Gain inaccuracy
  2. Frequency response
  3. Differential gain

Presentation

The presentation “Asymptotic-gain model introduces the asymptotic-gain feedback model.

Video

Asymptotic-gain feedback model

Study

Chapter 10.3.1, 10.3.2

Selection of the loop gain reference variable

The analysis of feedback circuits with the asymptotic-gain feedback model gives the same result as network analysis techniques. However, if the loop gain reference is selected in a proper way, the asymptotic-gain model provides much more design information and it facilitates two-step design of negative feedback circuits.

Presentation

The presentation “Selection of the loop gain reference illustrates the way in wich the loop gain reference should be selected such that the model provides meaningful design information.

Video

Selection of the loop gain reference

Study

Chapter 10.3.3, 10.3.4

Port of impedance single-loop feedback amplifiers

The port impedance of single-loop feedback amplifiers can be expresses in tems of the asymptotic-gain feedback model.

Presentation

The presentation “Port impedance of single-loop feedback amplifiers shows the way in which this can be done.

Study

Chapter 10.3.6

Derive controller requirements from amplifier requirements

Bandwidth of a negative feedback amplifier

For design purposes it is convenient to decouple the definition of the bandwitdth of a negative feedback amplifier from its desired frequency characteristic. This can be achieved by defining the bandwidth of a negative feedback amplifier by that of its servo function.

Presentation

The presentation “Bandwidth of a negative feedback amplifier shows that the bandwidth of a negative feedback amplifier will be defined as that of its servo function.

Video

Bandwidth definition for negative feedback amplifiers (3:40)

Study

Chapter 11.4.1

Example: Bandwidth of a negative feedback transimpedance integrator

Presentation

The presentation “Bandwidth Transimpedance Integrator shows the bandwidth definition for a negative feedback transimpedance integrator.

Video

Example Bandwidth definition for an OpAmp Integrator Circuit (7:12)

study

Chapter 11.4

Butterworth or Maximally Flat Magnitude (MFM) responses

The -3dB cut-off frequency of systems with a Butterworth or MFM transfer equals the Nth root of the magnitude of the product of their N poles, where N is the order of the system.

In this course we will design the frequency response of a feedback amplifier in such a way that the servo function obtains an MFM or Butterworth filter characteristic over the frequency range of interest. Design procudures for other filter characteristics, such as, Bessel or Chebyshev do not differ. Only the numeric relation between the -3dB bandwidth and the gain-poles product of the loop gain will be different.

Presentation

The presentation “Butterworth or Maximally Flat Magnitude (MFM) responses shows the Laplace transfer functions, the pole patterns and the magnitude characteristics of first, second and third order Butterworth transfers.

Video

Butterworth frequency responses (4:07)

Study

Chapter 11.4.3

MFM bandwidth of an all-pole feedback amplifier

The product of the loop gain and the magnitude of the dominant poles of the loop gain is a design parameter for the -3dB MFM bandwidth of an all-pole negative feedback amplifier .

Presentation

The presentation “All-pole loop gain and servo bandwidth proofs the above.

Video

All-pole Loop Gain and Servo Bandwidth (5:13)

Study

Chapter 11.4.3

Determination of the dominant poles of the loop gain

Presentation

The presentation “Dominant and non-dominant poles in feedback systems illustrates the procedure for separating dominant poles and non-dominant poles on feedback systems.

Video

Dominant poles and non-dominant poles of the loop gain (8:53)

Study

Chapter 11.4.3

Determination of the requirement for the gain-bandwidth product of an operational amplifier

The requirement for the GB-product of an operational amplifier can be derived from the loop gain-poles product (for dominant poles only).

Presentation

The presentation “Determination of OpAmp GB-product requirement illustrates the procedure for deriving the requirement for the gain-bandwidth product of the operational amplifier from the expression of the loop gain.

Video

Determination of GB product requirements for operational amplifiers (5:35)

Study

Chapter 11.4.3

Frequency stability of negative feedback systems

A system is stable if its responses to bounded excitations are also bounded.

A lumped system is said to be stable if the solutions of its characteristic equation (the poles) all have a negative real part.

Presentation

The presentation “Frequency stability of feedback amplifiers presents three ways to determine the stability of feedback systems.

Study

Chapter 11.5

Frequency compensation

Introduction to Frequency Compensation

After the bandwidth of a negative feedback amplifier has been designed, the poles of the transfer are not necessarily in the desired positions.

Presentation

The presentation “Introduction to Frequency Compensation defines the term frequency compensation and presents strategies and methods for frequency compensation.

Video

Introduction to frequency compensation (9:01)

Study

Chapter 12.1

The Phantom Zero

Phantom zero frequency compensation is the most powerful frequency compensation technique.

Presentation

The presentation “Frequency Compensation: the Phantom Zero introduces the concept of the phantom zero.

Video

Phantom Zeros (0:00 - 4:30)

Study

Chapter 12.2.1

Phantom Zero Compensation of a 2nd-order System

Presentation

The presentation “Frequency Compensation: the Phantom Zero Compensation of a 2nd-order System applies the concept of phantom zero frequency compensation to the compensation of a second order system.

Video

Phantom Zeros (4:30 - 18:20)

Study

Chapter 12.2.2

Implementation of Phantom Zeros

Practical implementation of phantom zeros can be accomplishes in two ways:

  1. Active phantom zeros
  2. Passive phantom zeros

Active implementation requires the use of active differetiating circuits in the feedback loop of the amplifier.

Passive compensation requires the insertion of loop gain zeros in:

  1. The feedback network
  2. Coupling networks between the signal source and the input of the amplifier
  3. Coupling networks between the output of the amplifier and the load.

Such passive zeros are called effective if:

  1. They do not significantly affect the initial pole positions (before compensation) of the loop gain
  2. They do not introduce new dominant poles

This is usually the case if, before compensation, these feedback networks or coupling networks introduce a large attenuation in the loop gain at the phantom zero frequency.

Presentation

The presentation “Implementation of Phantom Zeros presents passive implementation techniques for phantom zeros and discusses the effectiveness of the frequency compensation.

Study

Chapter 12.2.4, 12.2.5, 12.2.6

Examples Phantom Zero Frequency Compensation

Presentation

The presentation “Examples Phantom Zero Compensation presents Examples 11.8, 12.8 and 12.9.

Video

Examples of implementation of phantom zeros (15:23)

Study

Examples 11.8, 12.8 and 12.9

Phantom zero compensation and interaction with other performance aspects

Presentation

The presentation “Phantom zero compensation and interaction with other performance aspects briefly discusses the interaction between frequency compensation with phantom zeros and other performance aspects, such as, noise, bandwidth, weak distortion, energy storage, power dissipation and overdrive recovery.

Study

Chapter 12.2.8.